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ABSTRACT 

In this article, the effect of partial slip flow and heat transfer of non - Newtonian fluid over a 

stretchable rotating porous disk is investigated. The solution of obtained equations is computed 

numerically using an Runge Kutta scheme. The numerical calculations for wall roughness parameter , 

Reiner - Rivlin fluid parameter are  estimated. The effect of varied non - dimensional parameter wall 

roughness in Newtonian and non - Newtonian fluid, Reiner - Rivlin fluid, Prandtl number, thermal 

slip on velocity and temperature profile are analyzed through graphs. 
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I INTRODUCTION 

 The steady incompressible flow induced by the rotation of an infinite plane with uniform 

angular rate is a certain resolution of the Navier – Stokes equations, as was initial described[1]. The 

flow is characterized by the dearth of a radial pressure gradient regarding the disk to balance the 

centrifugal forces therefore the fluid spirals outwards. The disk acts as a centrifugal fan, the fluid 

emanating from the disk being replaced by an axial flow directed back towards the surface of the 

disk. [2] explored stagnation-point flow because of stretchable rotating disk within the existence of 

thwart wise magnetic field. [3] extended from the quality Von Karman swirling flow problem 

wherever the rotating disk surface admits partial slip in the presence of a regular suction or injection. 

 The MHD steady flow of viscous Nano fluid because of a rotating disk has been 

investigated[4]. [5]enforced Keller - Box methodology for magneto Nano fluid flow and heat transfer 

close to a rotating disk to compute similarity solutions of the matter.[6] investigated numerical 

resolution of heat transfer analysis in three dimensional physical phenomenon stagnation point flow 

of incompressible ferro fluid over a stretchable rotating circular disk within the presence of uniform 

external field. Von Karman problem of infinite rotating disk was extended for the case wherever the 

area on top of the rough disk is provided by an electrically conducting nano fluid [7]. [8] explored the 

von - Karman problem for Bingham fluids. Their analysis unconcealed that yield stress in Bingham 

fluid contributes to a growth in minimum force required to keep up steady disk rotation. Non-

Newtonian physical phenomenon flow and heat transfer over an exponentially stretching sheet with 

partial slip boundary condition has been studied [9]. 
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 The work [10], the Coupled flow and heat transfer in elastic fluid with Cattaneo - Christov 

heat flux model with the help of homotopy analysis methodology (HAM). In porous medium, the 

flow and radiation heat transfer of a nanofluid over a stretching sheet with velocity slip and 

temperature jump was mentioned[11]. [12] investigated a mixed convection flow of a third - grade 

fluid close to the orthogonal stagnation point on a vertical surface with slip and viscous dissipation 

effects. The boundary layer flow of a second-grade fluid during a porous medium past a stretching 

sheet and heat transfer characteristics with power-law surface temperature or heat flux was studied by 

[13]. 

 [14] explored the heat transfer characteristics within the peristaltic transport of Powell-Eyring 

fluid within a semicircular channel with complaint walls. The streamline flow of Oldroyd-B fluid 

evoked by a deforming sheet within the existence of transversal magnetic flux was mentioned by  

[15]. Therefore the target of this present work is to the effect of partial slip flow and heat transfer of 

non - Newtonian Reiner - Rivlin fluid over a stretchable rotating disk. This present work is likely to 

possess concerning to the problem of heat transfer which may be helpful in industries for 

electrochemical systems, deposition of coatings on surfaces, rotor-stator system etc.   

II MATHEMATICAL FORMULATION 

 Let  the steady flow of an incompressible Reiner-Rivlin fluid occupying semi-infinite region 

on top of an infinite disk coinciding with the plane z = 0. The disk is during a state of rigid body 

rotation regarding the vertical axis with constant angular velocity 𝜔 through a porous medium that 

sets up a swirling flow within the neighboring fluid layers.  

Let u, v and w be the elements of velocity on the directions of accelerating r, 𝜙  and z 

severally. Due to the axial symmetry, the velocity elements are assumed to be independent of the 

angle coordinate u. Partial slip conditions are enforced considering that characteristic scale of 

protuberance is tiny compared to the boundary layer thickness. Let 𝑇𝑊 be the constant temperature at 

the disk and 𝑇∞ is that the fluid temperature high above the surface. We tend to make use of the 

temperature jump condition is that the current analysis. Reiner and Rivlin have developed the 

subsequent represent relation: 

𝜏𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜇𝑒𝑖𝑗 + 𝜇𝑐𝑒𝑖𝑘𝑒𝑘𝑗 ;              𝑒𝑗𝑗 = 0,                                                                  (1) 

in which 𝜏𝑖𝑗 denotes the strain tensor, p represents pressure, 𝜇 is that the co-efficient of viscosity, 𝜇𝑐 

represents the cross-viscosity constant, 𝛿𝑖𝑗 is that the Kronecker symbol and 𝑒𝑖𝑗 = (
𝜕𝑢𝑖

𝜕𝑥𝑗
) + (

𝜕𝑢𝑗

𝜕𝑥𝑖
) is 

that the deformation rate tensor. Relevant equations describing fluid motion and heat transfer over a 

rotating disk are given below: 

Continuity Equation 

𝜕𝑢

𝜕𝑟
+

𝑢

𝑟
+

𝜕𝑤

𝜕𝑧
= 0                                                                                                                        (2) 
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Motion Equation 

𝜌 (𝑢
𝜕𝑢

𝜕𝑟
+ 𝑤

𝜕𝑢

𝜕𝑧
−

𝑣2

𝑟
) =

𝜕𝜏𝑟𝑟

𝜕𝑟
+

𝜕𝜏𝑟𝑧

𝜕𝑧
+

𝜏𝑟𝑟 − 𝜏𝜙𝜙

𝑟
                                                          (3) 

𝜌 (𝑢
𝜕𝑣

𝜕𝑟
+ 𝑤

𝜕𝑣

𝜕𝑧
+

𝑢𝑣

𝑟
) =

1

𝑟2

𝜕

𝜕𝑟
(𝑟2𝜏𝑟𝜙) +

𝜕𝜏𝑧𝜙

𝜕𝑧
+

𝜏𝑟𝜙 − 𝜏𝜙𝑟

𝑟
                                        (4) 

𝜌 (𝑢
𝜕𝑤

𝜕𝑟
+ 𝑤

𝜕𝑤

𝜕𝑧
) =

1

𝑟

𝜕(𝑟𝜏𝑟𝑧)

𝜕𝑟
+

𝜕𝜏𝑧𝑧

𝜕𝑧
                                                                                  (5) 

Energy Equation 

𝜌𝑐𝑝 (𝑢
𝜕𝑇

𝜕𝑟
+ 𝑤

𝜕𝑇

𝜕𝑧
) = 𝑘

𝜕2𝑇

𝜕𝑧2
,                                                                                                   (6) 

where 𝜌 stands for fluid density, k for thermal conduction and 𝑐𝑝 for the specific heat capacity. The 

last term in Eq. (4) are often omitted by using symmetry assumption for the elements of stress tensor. 

For the current (axisymmetric) flow, the elements of deformation rate tensor are given below [8]: 

𝑒𝑟𝑟 = 2
𝜕𝑢

𝜕𝑟
 ,           𝑒𝜙𝜙 = 2

𝑢

𝑟
 ,        𝑒𝑧𝑧 = 2

𝜕𝑤

𝜕𝑧
  ,         

𝑒𝑟𝜙 = 𝑒𝜙𝑟 = 𝑟
𝜕

𝜕𝑟
(

𝑣

𝑟
),      𝑒𝑧𝜙 = 𝑒𝜙𝑧 =

𝜕𝑣

𝜕𝑧
   ,           (7) 

 𝑒𝑟𝑧 = 𝑒𝑧𝑟 =
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
                                                            

Through definition (1), the elements of stress tensor are obtained as follows: 

𝜏𝑟𝑟 = −𝑝 + 𝜇 (2
𝜕𝑢

𝜕𝑟
) + 𝜇𝑐 {4 (

𝜕𝑢

𝜕𝑟
)

2

+ (
𝜕𝑣

𝜕𝑟
−

𝑣

𝑟
)

2

+ (
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
)

2

}                             (8) 

𝜏𝑧𝑟 = 𝜇 (
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
) +𝜇𝑐  {(2

𝜕𝑢

𝜕𝑟
) (

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
) + (

𝜕𝑣

𝜕𝑟
−

𝑣

𝑟
) (

𝜕𝑣

𝜕𝑧
)

+ (
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
) (2

𝜕𝑤

𝜕𝑧
)}                                                                                   (9) 

𝜏𝜙𝜙 = −𝑝 + 𝜇 (2
𝑢

𝑟
) + 𝜇𝑐 {4 (

𝑢

𝑟
)

2

+ (
𝜕𝑣

𝜕𝑟
−

𝑣

𝑟
)

2

+ (
𝜕𝑣

𝜕𝑧
)

2

}                                          (10) 

𝜏𝑟𝜙 = 𝜇 (
𝜕𝑣

𝜕𝑟
−

𝑣

𝑟
) + 𝜇𝑐 {(2

𝜕𝑢

𝜕𝑟
) (

𝜕𝑣

𝜕𝑟
−

𝑣

𝑟
) + (

𝜕𝑣

𝜕𝑟
−

𝑣

𝑟
) (

2𝑢

𝑟
) + (

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
) (

𝜕𝑣

𝜕𝑧
)} (11) 

𝜏𝑧𝜙 = 𝜇 (
𝜕𝑣

𝜕𝑧
) +𝜇𝑐 {(

𝜕𝑣

𝜕𝑟
−

𝑣

𝑟
) (

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
) + 2 (

𝑢

𝑟
) (

𝜕𝑣

𝜕𝑧
) + 2 (

𝜕𝑣

𝜕𝑧
) (

𝜕𝑤

𝜕𝑧
)}                (12) 

𝜏𝑧𝑧 = −𝑝 + 𝜇 (2
𝜕𝑤

𝜕𝑧
) + 𝜇𝑐 {(

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑟
)

2

+ (
𝜕𝑣

𝜕𝑧
)

2

+ 4 (
𝜕𝑤

𝜕𝑧
)

2

}                                 (13) 

The partial slip condition for present flow is expressed as follows by assumptive no penetration at the 

disk. 

𝑢(𝑟, 0) = 𝛽1𝜏𝑟𝑧(𝑟, 0),               𝑣(𝑟, 0) = 𝛽2𝜏𝑧𝜙(𝑟, 0) + 𝑟𝜔,            𝑤 = 𝑤0                           

𝑇(𝑟, 0) = 𝑇𝑤 + 𝛽3𝑇𝑧(𝑟, 0).                                                                                                   (14𝑎) 

in which 𝛽1 denotes the radial slip coefficient, 𝛽2 is the azimuthal slip coefficient and 𝛾 represents 

the thermal slip coefficient. Since lateral velocities and temperature distinction are zero removed 

from the disk thus we have  

𝑢(𝑟, 𝑧) → 0, 𝑣(𝑟, 𝑧) → 0.             𝑇(𝑟, 𝑧) → 𝑇∞  𝑎𝑠 𝑧 → ∞                                     (14𝑏) 
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 Let us outline the subsequent self-similar transformations in terms of dimensionless distance 

𝜍 = (𝜔/𝜐)1/2 

(𝑢, 𝑣, 𝑤) = (𝑟𝜔𝐹′(𝜍), 𝑟𝜔𝐺(𝜍), −2√𝜈𝜔𝐹(𝜍))                                                                             

(𝑝, 𝑇) = (𝑝∞ − 𝜔𝜇𝑃(𝜍), 𝑇∞ + (𝑇𝑊 − 𝑇∞)𝜃(𝜍)),                                                              (15) 

where prime indicates differentiation with respect to 𝜍 . Note that Eq. (2) is identically satisfied by 

transformations (15) and (3) convert into the subsequent ordinary differential equations 

𝐹′′′ − 𝐹′2
+ 2𝐹𝐹′′ + 𝐺2 + 𝐾(𝐹′′2

− 2𝐹′𝐹′′′ − 𝐺′2
) = 0                                              (16)   

𝐺′′ − 2𝐹′𝐺 + 2𝐹𝐺′ + 2𝐾(𝐹′′𝐺′ − 𝐹′𝐺′′) = 0                                                                  (17) 

𝜃′′ + 2𝑃𝑟𝐹𝜃′ = 0                                                                                                                     (18) 

In the above equations, 𝑝𝑟 =
𝜇𝐶𝑝

𝑘
  denotes the Prandtl number and 𝐾 =

𝜇𝑐𝜔

𝜇
  is material parameter of 

Reiner-Rivlin fluid. Let us define: 

𝜆1 = 𝜌(𝜔𝜈)1/2𝛽1,         𝜆2 = 𝜌(𝜔𝜈)1/2𝛽2,         𝛾 = 𝜌(𝜔𝜈)1/2𝛽3                                   (19) 

Using (15), the boundary conditions (14a) and (14b) transform into the subsequent forms:    

𝐹′(0) = 𝜆1[𝐹′′(0) − 2𝐾𝐹′(0)𝐹′′(0)]     

𝐺(0) = 𝜆2[𝐺′(0) − 2𝐾𝐺′(0)𝐹′(0)] + 1                                        (20𝑎) 

𝜃(0) = 1 + 𝛾𝜃′(0)    

𝐹′ → 0, 𝐺 → 0, 𝜃 → 0 𝑎𝑠 𝜍 → ∞                                                                                         (20𝑏) 

 The presence of viscosity close to the disk produces tangential stress at the disk that resists its 

rotation. Torque T0 required to keep up steady rotation of disk with radius R is measured through the 

definite integral. 

𝑇0 = − ∫ 𝜏𝑧𝜙|𝑧=0

𝑅

0

(2𝜋𝑟2)𝑑𝑟 = −
𝜋𝜌𝜔

2
√𝜈𝜔𝑅4𝐺′(0)                                                      (21) 

Quantity of prime interest during this work is that the skin friction coefficient 𝐶𝑓  outlined as 

𝐶𝑓 =
√𝜏𝑟

2 + 𝜏𝜙
2

𝜌(𝑟𝜔)2
                                                                                                                          (22) 

where 𝜏𝑟  and 𝜏𝜙  denote the radial and azimuthal wall stresses. Through variables (15), Eq. (22) 

assumes the subsequent form: 

𝐶𝑓 = (
𝜔𝑟2

𝜈
)

−1/2

√(𝐹′′(0))
2

+ (𝐺′(0))
2

                                                                            (23) 

Another necessary quantity is the local Nusselt number Nu which may be obtained from the Fourier 

law as follows: 

𝑁𝑢 =
𝑟𝑞𝑤

𝑘(𝑇𝑊 − 𝑇∞)
= (

𝜔𝑟2

𝜈
)

1/2

𝜃′(0)                                                                                 (24) 

Additionally, the overall quantity of fluid drawn within the axial direction is measured through 

𝐹(∞). Therefore numerical computations for 𝐹′′(0), 𝐺′(0), 𝜃′(0) and 𝐹(∞) will be made to grasp 

physical aspects of the problem. 
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III NUMERICAL APPROACH 

Mathematical equations are obtained in terms of higher order equation. Reduction of partial 

differential equation to nonlinear ordinary differential equation by exploitation some appropriate 

transformation. 

 The governing equations exhibit by (16) - (18) along with the conditions (20a) and (20b) 

could be a two-point boundary value problem that seems difficult to evaluate analytically. Therefore 

we tend to take Runge - Kutta methodology to seek a numerical resolution of the problem. Let us 

convert Eqs (16) - (18) into a system of first-order equations by substituting 

𝑥1 = 𝐹 , 𝑥2 = 𝐹′ , 𝑥3 = 𝐹′′ , 𝑥4 = 𝐺  , 𝑥5 = 𝐺′ , 𝑥6 = 𝜃 , 𝑥7 = 𝜃′  

We acquire the subsequent 

𝑥1
′ = 𝑥2 ,  𝑥2

′ = 𝑥3 , 𝑥3
′ =

𝑥2
2−2𝑥1𝑥3−𝑥4

2−𝐾𝑥3
2+𝐾𝑥5

2

1−2𝐾𝑥2
   

𝑥4
′ = 𝑥5, 𝑥5

′ =
2𝑥2𝑥4−2𝑥1𝑥5−2𝐾𝑥3𝑥5

1−2𝐾𝑥2
   

𝑥6
′ = 𝑥7  , 𝑥7

′ = −2𝑃𝑟𝑥1𝑥7           (25) 

With the initial conditions 

𝑥1(0) = 0 ,   

 𝑥2(0) = 𝜆1[𝑥3(0) − 2𝐾𝑥2(0)𝑥3(0)] ,   

𝑥3(0) = 𝑢(1)  ,  

𝑥4(0) = 𝜆2[𝑥5(0) − 2𝐾𝑥5(0)𝑥2(0)] + 1 ,  

𝑥5(0) = 𝑢(2),   

𝑥6(0) = 1 + 𝛾𝑥7(0),   

 𝑥7(0) = 𝑢(3)                           (4.26) 

 To solve the above system numerically, we tend to implement Runge - Kutta methodology of 

fifth order considering appropriate guesses for the unknown slopes u(1), u(2) and u(3). Within the 

course of computations, the step size h = 0.01 is chosen whereas residual of boundary conditions at 

infinity is assumed to be 10−5. 

IV FIGURES AND TABLES 

Table 1: Comparison of present findings with those of Turkyilmazoglu [2] in uniform roughness case 

(𝜆1 = 𝜆2) with K=0 

𝝀𝟏 𝝀𝟐 Existing 

𝑭′′(𝟎) 

Existing 

𝑮′(𝟎) 

Existing 

𝑭(∞) 

Present 

𝑭′′(𝟎) 

Present 

𝑮′(𝟎) 

Present 

𝑭(∞) 

0 0 0.5102330 -0.6159218 0.442226 0.5102335 -0.6159214 0.442224 

1 1 0.1279239 -0.3949279 0.394711 0.1279244 -0.3949274 0.394708 

5 5 0.0185881 -0.1433878 0.291840 0.0185886 -0.1433873 0.291837 

10 10 0.0068123 -0.0810300 0.243795 0.0068128 -0.0810297 0.243793 

20 20 0.0023613 -0.0437882 0.199903 0.0023618 -0.0437878 0.199901 

40 40 0.0007897 -0.0229950 0.160962 0.0007903 -0.0229946 0.160957 
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Table 2: Computational results of 𝐹′′(0), 𝐺′(𝑂), 𝐹(∞) and √(𝐹′′(0))
2

+ (𝐺′(0))
2
 for different 

values of 𝜆1, 𝜆2 and  K 

𝝀𝟏 𝝀𝟐 K 𝑭(∞) 𝑭′′(𝟎) 𝑮′(𝑶) √(𝑭′′(𝟎))
𝟐

+ (𝑮′(𝟎))
𝟐
 

0 1 1 0.311703 0.207328 -0.358182 0.413859 

1 1 1 0.344450 0.115542 -0.434950 0.450035 

5 1 1 0.370577 0.046256 -0.495400 0.497559 

10 1 1 0.377728 0.0269280 -0.512592 0.513298 

20 1 1 0.382160 0.014732 -0.523513 0.523720 

40 1 1 0.384367 0.007742 -0.529792 0.529848 

1 0 1 0.391593 0.164950 -0.815801 0.832310 

1 1 1 0.344450 0.115542 -0.434948 0.450033 

1 5 1 0.259794 0.053218 -0.149822 0.158993 

1 10 1 0.217802 0.033267 -0.083026 0.089443 

1 20 1 0.164478 0.019743 -0.044249 0.048454 

1 40 1 0.130637 0.011338 -0.023053 0.025688 

1 1 0 0.394628 0.127917 -0.394920 0.415120 

1 1 2 0.292082 0.077913 -0.424418 0.431510 

1 1 4 0.224868 0.033992 -0.351566 0.353209 

1 1 6 0.187209 0.020208 -0.304637 0.305308 

1 1 8 0.166736 0.014228 -0.272426 0.272797 

 

Table 3:Values of 𝜃′(0) for different  values of K, 𝛾 and Pr when 𝜆1 = 𝜆2 = 1 

K 𝜸 Pr 𝜽′(𝟎) 

0 1 8 0.533148 

2 1 8 -0.453107 

4 1 8 -0.370246 

6 1 8 -0.322058 

8 1 8 -0.289546 

1 0 8 -1.003957 

1 1 8 -0.500983 

1 5 8 -0.166771 

1 10 8 -0.090934 

1 20 8 -0.047624 

1 40 8 -0.024387 

1 1 3 -0.343426 
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1 1 4 -0.394305 

1 1 8 -0.500984 

1 1 11 -0.544935 

 

Figure 4.1 Velocity profile for different values of wall roughness parameters 𝜆1 𝑎𝑛𝑑 𝜆2 in Newtonian 

fluid case 

 

Figure 4.2 Temperature profile for different values of wall roughness parameters 𝜆1 𝑎𝑛𝑑 𝜆2 in 

Newtonian fluid case 
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Figure 4.3 Temperature profile for different values of Reiner - Rivlin fluid parameter K 

 

 

Figure 4.4 Temperature profile for different values of Reiner - Rivlin fluid parameter K in   no - slip 

case 
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Figure 4.5 Velocity profile for different values of wall roughness parameters 𝜆1 𝑎𝑛𝑑 𝜆2 in non - 

Newtonian fluid case 

 

Figure 4.6 Temperature profile for different values of wall roughness parameters 𝜆1 𝑎𝑛𝑑 𝜆2 in non - 

Newtonian fluid case 
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Figure 4.7 Temperature profile for different values of Prandtl number 

 

Figure 4.8 Temperature profile for different values of Thermal slip parameter 
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roughness parameters and comparing the computational results of radial wall stress 𝐹′′(0), azimuthal 

wall stress 𝐺′(0) and entrainment velocity 𝐹(∞)   by the numerical theme is formed by with 

obtainable study [3] within the Newtonian fluid case. It demonstrates that our numerical findings are 

nearly the same as those found by [3] for all values of wall roughness parameters. 

 Table 2 computes 𝐹′′(0), 𝐺′(0)and 𝐹(∞) for numerous parameter values. In either radial or 

azimuthal slip coefficient incremented once torque furthermore because the skin friction factor 

elevates. The local Nusselt number obtained at completely different values of Reiner-Rivlin fluid 

parameter K and thermal slip parameter 𝛾 includes in table 3. It can increase elasticity parameter K 

then heat transfer rate ought to be elevate. The heat penetration depth shortens when thermal slip 

coefficient will increases and additionally Prandtl number Pr will increases once the heat transfer rate 

elevates. In figure 4.1 depicts the dimensionless velocity profile for various values of the wall 

roughness parameters 𝜆1 𝑎𝑛𝑑 𝜆2 in Newtonian fluid case. It is detected that a rise in wall roughness 

parameters lead to decrease within the velocity profile. 

 In figure 4.2 illustrates the impact of wall roughness parameters 𝜆1 𝑎𝑛𝑑 𝜆2 in Newtonian fluid 

case on the temperature profile. It shows that temperature component increases with a rise within the  

wall roughness parameters. In figure 4.3 the effect of Reiner – Rivlin fluid parameter K on 

temperature profile is shown. It is obvious that as K is enlarged, the temperature profile is magnified. 

In figure 4.4 for numerous values of Reiner – Rivlin fluid parameter K in no - slip case, its impact on 

temperature profile is illustrated. It is additionally clear that because the value of Reiner – Rivlin 

fluid parameters increases, the temperature profile also increases. 

 In figure 4.5 indicates the fact that increase in wall roughness parameters 𝜆1 𝑎𝑛𝑑 𝜆2 in non - 

Newtonian fluid case decelerates fluid flow within the Velocity profile. In figure 4.6 for various 

values of wall roughness parameters 𝜆1 𝑎𝑛𝑑 𝜆2  in non - Newtonian fluid case, its result on the 

temperature profile are illustrated. It is also clear that as the value of wall roughness parameters 

increases, the temperature profile also increases. In figure 4.7 the result of Prandtl number on 

temperature profile is shown. It is obvious that as Pr is accrued, the temperature profile is weakened. 

In figure 4.8 for various values of Thermal slip parameter, its effect on the temperature profile are 

illustrated. It is additionally clear that because the value of thermal slip parameter increases, the 

temperature profile decreases. 

VI CONCLUSION 

 In this study elasticity and wall roughness effects in Partial slip flow and heat transfer of non - 

Newtonian fluid evoked by a rough porous rotating disk is studied in the presence of suction. The 

consequences of viscoelasticity and wall roughness are examined numerically. The numerical 

resolution for determination governing nonlinear ordinary differential equation is executed through 

Runge-Kutta fifth order technique. 

 The Reiner-Rivlin fluid parameter K is incremented once radially outward flow close to the 

disk developed by disk centrifugal impact decrease. Decelerates driving torque and skin friction 

factor are expect for increasing elastic effects. The result of torque and skin friction factor are 
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increasing by increasing wall roughness parameters 𝜆1 and 𝜆2. The slip effect becomes stronger once 

the entrainment velocity reduces. 

 Radial velocity profile decreases close to the disk and also the wall roughness parameters 

elevates. The temperature profile is reciprocally proportional to the wall roughness parameters. 

Thermal boundary layer elevates for Reiner-Rivlin fluid parameter K values increases. Thermal slip 

parameter will increases once the thermal boundary layer shrinks and heat transfer rate enhances. 

Elastic impact enhances temperature profile however decreases the magnitude of local Nusselt 

number. 
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